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It is emphasized that the use of statistical methods is a consequence of the incomplete 
isolation of physical systems. The description of a partially specified quantum state 
by a density operator is shown to be equivalent to a description in terms of an ensemble 
of systems. Several definitions of the statistical operator are shown to be identical. 
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1. I N T R O D U C T I O N  

The use of  statistical ensemble theory in physics derives f rom our incomplete knowl- 
edge about reality. The traditional approach m to quantum statistical mechanics 
recognizes the fact that a macroscopic description never specifies the microstate of  a 
system uniquely. When making macroscopic predictions, one has to incorporate 
contributions from all microscopic states compatible with our knowledge, with equal 
weight. This statement is introduced as the basic postulate of  statistical physics by 
Tolman. m In practice, some macroscopic values occur in the overwhelming majority 
of  microscopic states, and these are the most probable predictions of  the values of  the 
macroscopic variables. For large systems, the deviations are small enough to make the 
method rigorous. 

In some systems, e.g., the classical gas, an ergodic theorem is needed to justify 
the use of  ensembles, whereas in other systems, especially solids, the measured quan- 
tities are obviously averages over a large number of nearly equal parts and the repre- 
sentative ensemble is realized in Nature. 

In this paper, we want to justify the method of statistical physics f rom the 
following point of view: The closed models of physics represent real systems only 
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approximately, as the rest of the world always acts as a perturbation. These sur- 
roundings constitute the heat and particle baths occurring in thermal physics. This 
view is well recognized by Gibbs, C2~ who shows that energy conservation in the com- 
bined system leads to a canonical distribution in the subsystem. 

The subsystem under consideration together with its surroundings may be des- 
cribed by a quantum mechanical state. If the description is formulated in terms of 
the variables of the subsystem only, it was recognized by Landau (a) that a more general 
description in terms of a statistical or density matrix is needed. 

Each member of an ensemble of systems is described quantum mechanically by 
a state vector in Hilbert space. The "end points" of the vectors form a point set 
describing the ensemble in the same way as a classical ensemble is described by a 
point set in phase space. Von Neumann (4~ showed that the ensemble is represented 
by a statistical operator in quantum mechanics. Independently, Dirac introduced 
both the quantum mechanical density operator ~5) and the statistical one. (6~ The 
equivalence of the two definitions seems intuitively clear, but is not transparent. To 
this author's knowledge, the equivalence is discussed only by ter Haar, C7~ and his 
proof  is too short to provide real insight into the physical assumptions behind the 
equivalence. It is the purpose of this paper to show, in a nonrigorous way, how the 
picture of physical systems embedded in unobserved surroundings leads to the des- 
cription of systems by means of statistical operators. 

The paper ends by displaying the equivalence of several usual definitions of the 
statistical density operator. 

2. Q U A N T U M  M E C H A N I C A L  DESCRIPTION OF A SUBSYSTEM 

We consider a dynamic subsystem embedded in its surroundings. When the 
subsystem and the surroundings are uncoupled, its state can be described by the 
complete set {I r and the surroundings can be characterized by an array of quantum 
numbers /~. The symbol rn as well as /z stands for a set of quantum numbers, with 
enough members to characterize the states uniquely. The state of the combined 
system I tp)  may then be expanded in the states of the subsystem and the surroundings: 

IT>  - ~ </~m I T )  I t~}l r (1) 
~7/7, 

The expectation values of operators A which act only on the variables of the subsystem 
can be written 

<h v [ A [ ~ )  = ~ < r 1 6 2  = T r A p  (2) 

where A and p are operators on the subsystem only with the matrix elements 

A~.~, = ( r  I A I ~b~,) (3) 

p~'~ = ~, <lxm' l T ) < T  I ~rn> 

If  we define the pure state density operator as ] 7I)<7I I, we see that p~,~ is the reduced 
density matrix obtained by tracing over the unobserved states of the surroundings. 
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As an example, we take the quantum numbers m to be the coordinates xl which 
are observed and the numbers/x to be unobserved coordinates qj. The component 

(qj xi ] k~) z W(ql, xj) (4) 

is then the wave function of the combined systems. The relation (3) becomes 

p(xl  , xi ')  = f dq~b(qj , x 0 ~b*(qj , x , ' )  (5) 

which is the conventional definition of the quantum mechanical density matrix in 
atomic and molecular physics. (7) 

According to the conventional interpretation of quantum mechanics, the proba- 
bility of occurrence of a given pair (/x, m) in the state (1) is [(/xm i 7/)12- The probability 
for a given va!ue/x irrespective of m is 

P(t~) = ~ I(t~m ] 7s)l e (6) 

We now take the conventional interpretation of quantum mechanics to imply that, if 
we measure the values of/~ and m on an ensemble of systems all in the state E W), 
we will obtain a distribution determined by the probabilities above. After the measure- 
ment, the systems are generally not in the same state any more. We now assume the 
existence of a preparing apparatus which can separate the systems according to the 
value of/~ without measuring it. The simplest example of such a preparing device is 
the Stern-Gerlach spin filter. 

The distribution of systems over the various channels is given by (6). If  we establish 
the presence of a system in a given channel by measuring/~, the state in this channel 
is reduced to 

obtained by normalizing the component of l gt) on the vector I ~). 
We now consider the reduced density operator of Eq. (3), 

o = Y, I 
'i'/7/~q, 

fgr Lt~ ..I 

Taking into account the definition (7) of the filtered states and the probabilities of their 
occurrence (6), we write (8) as 

= Z I (9) 

This is the definition of the statistical operator given by Dirac. (s) 
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The conclusion is: Calculating expectation values of operators acting on the sub- 
system only using the state I k~), one obtains the same results as performing the 
following: (a) take an ensemble of systems in the state [ 7t); (b) pass them through 
a filter separating them according to the value of/x; (c) verify by measurement that 
systems with the values/x are present; the wave function of each is then reduced to (7); 
(d) form an ensemble of all the systems that have passed the filter; (e) calculate 
measurable quantities of the subsystem as averages over this ensemble. 

This set of rules gives an operational prescription for the construction of an 
ensemble corresponding to an unobserved probability distribution in the surroundings. 

3. T H E  S T A T I S T I C A L  O P E R A T O R  

If  we have a total of N systems, we find that the number of systems in the channel 
is 

N .  : P(I~)N (10) 

Introducing this into (9) gives 

p = (1 /N)~  I r N.@(/~)] (11) 
/.t 

If  we number the systems by i = 1, 2 . . .  N, the state of the ith system is ] r and 
the sum in (11) can be written as a sum over the systems, instead of a sum over the 
states/~, 

O = ( l / N ) ~  I r162 (12) 
i 

where the state I r occurs N,~ times in the summation. If  we choose an arbitrary 
complete set of states 

~ I ~ ) ( ~  [ = 1 (13) 

in the Hilbert space of the subsystem, the density matrix in this representation is 

Pab : (~Oa ]P I ~b) = ( I / N ) ~  @oa [ r162 [ %)  
i 

= Ca(i) cb*(i) 

where we have expanded the state of the ith system in the basis {1 qoa)}: 

(14) 

I ~b(pti)) = ~ ca(i)] ~oa) (15) 
a 

The expressions (9), (11), (12), and (14) are equivalent expressions for the statistical 
density operator. The component form (14) of the definition is used by Tolman. (1) 
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4. D I S C U S S I O N  

In this paper, I have put forward a simple statistical interpretation of the quantum 
mechanical density matrix. A quantum mechanical system which is only incompletely 
described cannot be represented by a wave function but requires a density matrix 
(see the discussion by Landau and Lifshitz(9)). This approach is, in spirit, equivalent 
to their view of statistical physics (1~ as a description of systems only approximately 
isolated from their surroundings. They define the probability distribution for the quan- 
tum mechanical states in such a way that the ergodic theorem is trivially satisfied. 
As I have pointed out, there is often reason enough for the introduction of ensembles 
even without the use of an ergodic theorem. This possibility is clearly indicated by 
Gibbs (2) and emphasized by Tolman. (*) In my opinion, it is futile to attempt a justifi- 
cation of statistical physics for closed systems, because its use in actuaI physical 
applications clearly derives from neglect of interactions between the systems involved. 

If  we only specify the total energy of the combined system, we have to include 
contributions from all states (1) with the given total energy. According to the principle 
of equal a priori probability, each system has the same weight and we obtain the micro- 
canonical distribution. It is then shown by Gibbs (2) that the subsystem is described 
by a canonical distribution (see also Ref. 10). 

In case the surroundings consist of a classical gas of N free particles, this result 
can easily be derived explicitly, m) The total energy is 

E = (Hsub) + ~, (1/2m)<P~ ~) (16) 
i 

and the states [/z) are 

= V - a N I 2 e x p i i ~ p i . r i / h ]  (17) <rl , r2 ,..., rN I pl  ,..., PN) 
L "i, 

If  I r are the eigenstates of//sub with eigenenergy E~, the reduced density operator 
for given total energy E is 

o=fd*Nr~ Y~ [~b,~)i(rl ..... r N i p l , . . . , p N ) i 2 8 ( E - - E , , - - ~ p i 2 / 2 r n ) ( ~ b , ~ ]  
~z Io 1 .  . .  !o N 

- Y, I r  P(n)<r I (18) 
q~ 

where, in the limit of a large system, we have 

--  ( , -  . . i . ) - '  S " .  - 

(19) 
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Setting E = NE and assuming E~ ~ E, we find for the dependence on E~ that  

P(n) = const  • (1 - -  En/NE) (3N-2)/2 

const  • e -3E~t2' (20) 

which gives a canonical distribution with the temperature determined by equipartit ion 

e = ~ k T  (21) 

in the gas. As a classical gas may  be used to define the temperature scale, this shows 
that  our  derivation is quite general. 

In  the filter discussed in Section 2, we assumed that  the different values/~ were 
separated on an equal basis. When  we use it as a preparing device for  real measure- 
ments, we often want  to transmit systems with different /~ values differently. Then, 
the weight function P(/z) of  (9) will depend both  on the incoming state and on the 
filter. This is very close to the approach  taken when density matrices are used in spin- 
polarization experiments. (12~ The filter prepares the ensemble to be measured by 
affecting the spin states differently. The weight functions are here determined by the 
experimental setup only and no thermal considerations are normally involved. 
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